반응형
반응형

파이썬(python)에서 사용할 수 있는 팁 러닝 라이브러리 파이토치(PyTorch)는 팁 러닝에서 가장 많이 사용되는

신경망(Neural Networks)을 간편하게 변형하면서 활용이 가능합니다.

신경망(Nural Networks)은 피드 포인트 네트워크가 여러개의 레이어를 차례로 통과시킨 다음 마지막으로 출력을 반환하는 기술입니다.

학습 가능한 파라미터 및 가중치를 적용하여 입력 데이터 세트를 반복하면서 손실 계산 후 보정을 거쳐 네트워크의 가중치를 업데이트합니다.

파이토치(PyTorch)는 신경망(Nural Networks) 데이터에 대한 작업을 수행할 수 있는 계층, 모델을 지원합니다.

torch.nn 네임스페이스를 사용해서 신경 네트워크를 구축에 필요한 빌링 블록을 제공합니다.

신경망(Nural Networks)은 CPU 활용보다는 GPU 모델로 사용하는 것을 권장합니다.

GPU를 사용하기 위해서 Torch.cuda 설치 여부를 확인합니다.

evice = 'cuda' if torch.cuda.is_available() else 'cpu'
    print('Using {} device'.format(device))

전 아직 cuda 설치 전이기 때문에 cpu만 사용이 가능합니다.

 

신경망(Nural Nwtworks)를 사용하기 위해서 서브 클래싱을 통한 nn.Module 계층을 초기화가 필요합니다.

def CheckDevice():
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print('Using {} device'.format(device))

    model = NeuralNetwork().to(device)
    print(model)

class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

nn.Module 하위 클래스는 forward 메서드의 입력 데이터에 대한 작업을 구현했습니다.

클래스를 사용한 인스턴스를 만들고 device 정보를 출력했습니다.

__init__에 정의된 정보가 device에 저장되어 출력됩니다.

forward는 백그라운드 작업으로 진행되기 때문에 model.forward()를 직접 호출할 필요가 없습니다.

X = torch.rand(1, 28, 28, device=device)
    logits = model(X)
    pred_probab = nn.Softmax(dim=1)(logits)
    y_pred = pred_probab.argmax(1)
    print(f"Predicted class: {y_pred}")

정의된 클래스에 원시 예측 값이 있는 10차원 텐서를 설정하기 위해서, nn.Softmax 모듈의 인스턴스를 사용해서 예측 확률을 확인합니다.

 

파이 토치 신경망 모델 레이어

모델의 레이어를 구분하기 위해서 간단한 28 x 28인 이미지 3개의 샘플을 저장합니다.

def Modellayer():
    input_image = torch.rand(3, 28, 28)
    print(input_image.size())

3개의  28 x 28 이미지를 확인할 수 있습니다.

nn.Flatten 레이어를 초기화하여 각 2D 28 x 28 이미지를 784 픽셀 값의 연속 배열로 변환합니다.

def Modellayer():
    input_image = torch.rand(3, 28, 28)
    print(input_image.size())

    flatten = nn.Flatten()
    flat_image = flatten(input_image)
    print(flat_image.size())

3개의 배열이 784 연속 배열로 변경되었습니다.

nn.Linear은 선형 레이어를 구현할 수 있습니다.

def Modellayer():
    input_image = torch.rand(3, 28, 28)
    print(input_image.size())

    flatten = nn.Flatten()
    flat_image = flatten(input_image)
    print(flat_image.size())

    layer1 = nn.Linear(in_features=28 * 28, out_features=20)
    hidden1 = layer1(flat_image)
    print(hidden1.size())

hidden1 선형 레이어를 생성했습니다.

nn.ReLU은 입력과 출력 사이에 복잡한 매핑 비선형성을 사용할 수 있습니다.

선형 레이어 사이에 nn.ReLU를 사용해서 비선형성을 실행합니다.

def Modellayer():
    input_image = torch.rand(3, 28, 28)
    print(input_image.size())

    flatten = nn.Flatten()
    flat_image = flatten(input_image)
    print(flat_image.size())

    layer1 = nn.Linear(in_features=28 * 28, out_features=20)
    hidden1 = layer1(flat_image)
    print(hidden1.size())

    print(f"Before ReLU: {hidden1}\n\n")
    hidden1 = nn.ReLU()(hidden1)
    print(f"After ReLU: {hidden1}")

nn.Sequential은 모듈의 순서가 지정된 컨테이너를 생성할 수 있습니다.

정의된 데이터와 동일한 순서로 모든 모듈에 전달됩니다.

순차 컨테이너는 빠른 네트워크를 구성하기 위해서 사용됩니다.

seq_modules = nn.Sequential(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Linear(20, 10)
    )
    input_image = torch.rand(3,28,28)
    logits = seq_modules(input_image)
    print(logits)

nn.Softmax는 원시 값인 로짓을 반환합니다.

로짓은 각 클래스에 대한 모델의 확률을 나타내는 값[0,1]으로 지정됩니다.

매개변수는 값의 합이 1이 되어야 차원을 나타냅니다.

    softmax = nn.Softmax(dim=1)
    pred_probab = softmax(logits)

    print(pred_probab)

 

파이 토치 신경망 모데 매개변수

신경망에 사용되는 레이어는 매개변수화되어 있어 접근이 가능합니다.

서브 클래싱 된 nn.Module은 객체 내부에 정의된 모든 필드를 자동으로 추적하고 모델 parameters() 또는 named_parameters() 메서드를 사용하여 모든 매개변수에 액세스 할 수 있습니다.

    print("Model structure: ", model, "\n\n")

    for name, param in model.named_parameters():
        print(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \n")

처음 구현한 model에 추가 코드를 적용해서 매개변수를 확인했습니다.

파이토치(PyTorch) 신경망(Nural Networks)은 복잡한 정보를 클래스를 사용해서 다양한 구성이 가능합니다.

모델 레이어를 사용해서 가중치를 높이면서 정확한 데이터를 확보할 수 있습니다.

감사합니다.

반응형

+ Recent posts