반응형

오늘은 C# ML.NET 머신러닝 중 회귀를 사용한 값 예측을 구현해보겠습니다. 먼저 ML.NET를 설치해주세요. ML.NET 설치 방법은 아래 글을 확인해주세요. 

 

 

C# ML.NET 사용한 머신 러닝 Data Classification

머신 러닝은 다양한 Open API를 사용해서 공부할 수 있습니다. 가장 많이 사용하는 언어는 Python입니다. Python은 머신 러닝을 하기 위해서는 좋은 선택이지만, 완전한 프로그램을 개발하기 위해서는

believecom.tistory.com

ML.NET 설치 상태에서 C# Console 빈 프로젝트를 생성합니다.

프로젝트 속성에서 마우스 우클릭 후 추가 메뉴를 선택하고 "Machine Learning Model"을 추가해주세요.

모델 이름은 클래스 형태로 구성되므로, 사용하기 편리한 이름으로 지정하면 됩니다.

mbconfig 파일을 생성하면 머신러닝 학습을 구성할 수 있습니다. 두 번째 내용인 값 예측을 선택합니다.

가장 먼저 ML.NET 머신러닝 환경을 선택합니다. 기본적으로 로컬을 선택하면 됩니다. 환경 선택 후 "다음 단계" 버튼을 클릭하고 데이터 추가 단계로 이동합니다. 데이터 단계에서는 기본 학습에 필요한 기본 데이터가 있어야 합니다.

 

 

자습서: 회귀를 사용하여 가격 예측 - ML.NET

이 자습서에서는 ML.NET을 사용하여 가격(특히, 뉴욕 시 택시 요금)을 예측하기 위한 회귀 모델을 빌드하는 방법에 대해 설명합니다.

docs.microsoft.com

microsoft.com 가격 예측 페이지로 이동해서 아래쪽으로 내려가면 데이터 준비 및 이해 아래쪽에 "taxi-fare-train.csv" 파일을 다운로드할 수 있습니다.

"taxi-fare-train.csv" 파일을 선택하면 GitHub로 이동 후 "Download"를 눌러주면 파일을 다운로드할 수 있습니다.

"taxi-fare-train.csv"를 선택하고 예측할 열(레이블)에서 "fare_amount"를 선택합니다.

고급 데이터 옵션을 사용해서 불필요한 여측 값을 제외할 수 있습니다.

이제 로드된 데이터를 사용해서 학습을 시작합니다. 학습 시간은 10분으로 설정하고 학습 시작 버튼을 클릭합니다.

회귀 분석이란 데이터 값이 평균과 같은 일정한 값으로 돌아가려는 경향을 이용한 통계학 기법입니다. 저장된 택시 비용을 통계학 기법을 적용해서 학습합니다.

10분 후 학습이 완료되었습니다. 최적 품질은 학습 시간에 따라서 변경됩니다.

평가 모델에서 예측 값을 입력하면 fare_amount 결과 값을 확인할 수 있습니다.

이제 사용하기 위해서 코드를 복사하거나, Add to solution 버튼을 클릭해서 솔루션에 새 프로젝트를 생성합니다.

신규로 생성된 프로젝트를 사용해서 컴파일이 가능합니다.

코드를 사용해서 직접 값 예측이 가능합니다.

using System;
using ConsoleApp1;

var sampleData = new MLModel.ModelInput()
{
    Vendor_id = @"CMT",
    Rate_code = 1F,
    Passenger_count = 1F,
    Trip_time_in_secs = 1271F,
    Trip_distance = 3.8F,
    Payment_type = @"CRD",
};

MLModel.ModelOutput result = MLModel.Predict(sampleData);

Console.WriteLine("예측 결과 요금 : {0} ",result.Score);

ModelInput를 사용해서 학습 데이터를 생성하고 ModelOutput을 사용해서 결과를 예측할 수 있습니다.

반환된 결과는 Score를 사용해서 확인이 가능합니다.

ML.NET 회귀를 사용한 값 예측 방법은 다양한 회귀모델을 구현할 수 있어 머신러닝에 기초로 사용하기 매우 편리합니다. 기본적으로 데이터를 선 분석해서 사용하기 때문에 누구나 쉽게 머신러닝을 접근할 수 있는 좋은 개발 형태입니다. 머신러닝에 관심 있고 코딩을 잘 모른다면 C# ML.NET를 이용한 머신러닝 공부 지금 시작하세요.

감사합니다.

반응형

+ Recent posts